NIST

Information Technology Laboratory

COMPUTER SECURITY RESOURCE CENTER

3rd Open Security Controls Assessment Language (OSCAL) Workshop

_@. CLOUD NATIVE
COMPUTING FOUNDATION

Kubernetes Policy Working Group (WG)

Provide an overall architecture that describes both the current policy
related implementations and future policy proposals in Kubernetes.
Through a collaborative method, we want to present both operators
and users a universal view of policy architecture in Kubernetes.

GitHub: Slack:
kubernetes-sigs/wg-policy-prototypes https://slack.k8s.io/#we-policy

Open Meetings
Wed 8:00 AM Pacific/ 11 AM Eastern, Every two weeks

https://github.com/kubernetes-sigs/wg-policy-prototypes
https://slack.k8s.io/

Current Projects

1. Policy Report Custom Resource Definition (CRD)
2. OSCAL-aligned Policy Report

3. Kubernetes Policy Management Whitepaper

Policy Report
Custom Resource Definition (CRD)

Motivations

e How to standardize “policy interface”, similar to CSI, CNI, etc.

e Hard to formalize as “policy” covers several different areas of concerns
e.g. images, runtime, configuration, cluster etc.

e Difficult to standardize a policy language

If not a formal policy interface, what portion of the policy life-cycle would be
impactful to standardize across domains and use cases?

Policy Report

e Kubernetes resource (namespaced or cluster-wide)

e Definition only - controller not included

e Focused on current data. Historical data to be managed externally.
e Flexible reporting options for different engines

e Works with all K8s machinery and tools

e Align with industry and public sector efforts (e.g. OSCAL)

XACML (eXtensible Access Control Markup Language) Reference Architecture

PEP ’EEB

Policy Enforcement Point

users

resources

PDP = PAP

) —
Policy Decision Point v - Policy Administration Point

policies

PIP

Policy Information Point administrator

Kubernetes APl Request Flow

E—
“a— Authentication Authorization Admission Control
A

users

L .

j | Mutating Object schema | | Validating :
1 | admission admission admission | |
| 1

A4

Webhook Webhook Webhook

XACML Reference Architecture — Kubernetes

Admission Controls

e_©0 PEP r
o%a > 1A
& Policy Enforcement Point ;®
users

resources

External Management System

Policy Engine / PDP : - PAP

o —
K8s Controller Policy Decision Point v - Policy Administration Point

policies

APl server, P| P
other sources

Policy Information Point administrator

XACML Reference Architecture — Kubernetes with Policy Report

Admission Controls

e_©0 PEP r
o%a > 1A
& Policy Enforcement Point ;®
users

resources

External Management System

Policy Engine / PDP : - PAP

o —
K8s Controller Policy Decision Point v - Policy Administration Point

policies

q Policy
Reports

administrator

APl server, P| P
other sources

Policy Information Point

Policy Report Adoption

Tool Area of concern Status
Kyverno Configuration Security Completed
Policy Reporter Ul / Reporting / Notifications Completed
kube-bench CIS Kubernetes Benchmarks Completed
(Control plane, worker nodes)
Falco Runtime Security Completed
Trivy Vulnerability scanning Completed
KubeArmor Runtime Security Completed

OSCAL Policy Report

MAPPING

All Policy Result attributes have been
designed with mapping to OSCAL in
mind.

Initial mapping is focused on OSCAL
Observations.

local-definitions.inventory-items.prop

scope.apiVersion

scope.apiVersion

scope.kind

scope.kind

Scope.name

scope.name

ocal-definitions.inventory-items.prop |scope.namespace scc_scope scope.namespace
N/A metadata.name
N/A metadata.labels.wgpolicyk8s.io/engine

metadata.labels.policy.kubernetes.io/engi

N/A ne
apiVersion apiVersion
kind kind
metadata.namespace metadata.namespace
metadata.annotations.name metadata.annotations.name
metadata.annotations.category metadata.annotations.category
metadata.annotations.file metadata.annotations.file
metadata.annotations.version metadata.annotations.version
results.policy scc_rule results.policy

results.message

scc_description

results.message

results.result

scc_result

results.result

trestle

Trestle OSCAL object model
can easily be used to
convert content:

Excel files:

XML content:

The compliance-trestle (trestle) project provides helpful modules to assist your standardization
efforts. Discussed below are some best practices for automated bridging to NIST OSCAL.

Overview

You have a source of compliance data that is in non-OSCAL format (spreadsheet, XML, JSON,
database, object-store...) and you would like to transform into standardized form in terms of NIST
OSCAL. Presumed is an existing method for obtaining the compliance data from the cloud and
materializing on disk as one or more files.

Compliance
data source

File Interface Layer Trestie Transform Command Module
Data Processing Layer Trestle Transform Logic Module

Trestie OSCAL Support Module
Trestie Base with pydnatic

https://github.com/IBM/compliance-trestle-demos/tree/develop/CIS_controls
https://github.com/IBM/compliance-trestle-demos/tree/develop/ISM_catalog_profile

Thanks!

https://github.com/kubernetes/community/tree/master/wg-policy
https://github.com/kubernetes-sigs/wg-policy-prototypes

